Correct choice is (a) \(\frac{8}{16+ω^2}\)
Explanation: X (jω) = \(\int_{-∞}^∞ e^{-4|t|} e^{-jωt} \,dt\)
Now, e^-4|t| = e^-4t, when t>0 and
e^4t, when t<0
∴X (jω) = \(\int_{-∞}^0 e^{4t} e^{-jωt} \,dt + \int_0^∞ e^{-4t} e^{-jωt} \,dt\)
= \(\frac{8}{16+ω^2}\).