Right option is (a) \(\frac{6(s-5)}{(s-5)^2+4} – \frac{1}{s-7}\)
The explanation is: We know that, Laplace transform of e^at = \(\frac{1}{s-a}\)
Here, a=7, so L {e^7t} = \(\frac{1}{s-7}\)
And the Laplace transform of e^at cos (b t) = \(\frac{(s-a)}{(s-a)^2+b^2}\)
Here, a=5 and b=2, so L {6e^5t cos (2t)} = \(\frac{6(s-5)}{(s-5)^2+4}\)
∴ L {6e^5tcos(2t) – e^7t} = \(\frac{6(s-5)}{(s-5)^2+4} – \frac{1}{s-7}\).