Right option is (a) \frac{6(s-5)}{(s-5)^2+4} – \frac{1}{s-7}
The explanation is: We know that, Laplace transform of e^at = \frac{1}{s-a}
Here, a=7, so L {e^7t} = \frac{1}{s-7}
And the Laplace transform of e^at cos (b t) = \frac{(s-a)}{(s-a)^2+b^2}
Here, a=5 and b=2, so L {6e^5t cos (2t)} = \frac{6(s-5)}{(s-5)^2+4}
∴ L {6e^5tcos(2t) – e^7t} = \frac{6(s-5)}{(s-5)^2+4} – \frac{1}{s-7}.