The correct answer is (b) \(\frac{e^{-3(2+jω)}}{2+jω}\)
Easy explanation: X (jω) = \(\int_{-∞}^∞ x(t) e^{-jωt} \,dt\)
Given u (t-3), hence value of this will be equal to 1 when t>=3
∴ X (jω) = \(\int_3^∞ e^{-2t} e^{-jωt} \,dt \)
= \(\frac{e^{-3(2+jω)}}{2+jω}\).