Correct choice is (a) \(\frac{2}{π(4+t^2)}\)
Easy explanation: e^-2|ω| = e^-2ω, ω > 0 and e^2ω, ω<0
Hence, x (t) = \(\frac{1}{2π} \int_{-∞}^∞ e^{-2|ω|} e^{-jωt} \,dω\)
= \(\frac{1}{2π} \int_{-∞}^0 e^{2ω} e^{-jωt} \,dω + \frac{1}{2π} \int_0^∞ e^{-2ω} e^{-jωt} \,dω\)
= \(\frac{2}{π(4+t^2)}\).