The correct answer is (d) 2(xy’ – y)
The best I can explain: Since, x = e^t sint and y = e^t cost
Therefore, dx/dt = e^t sint + e^t cost
= y + x
And, dy/dt = e^t cost – e^t sint
= y – x
So, y’ = dy/dx = (dy/dt)/(dx/dt) = (y – x)/(y + x)
Thus, y” = [(x + y)(y’ – 1) – (y – x)(y’ + 1)]/(x + y)^2
Or, (x + y)^2y” = (x + y – y + x)y’ – x – y + x
= 2xy’ – 2y
= 2(xy’ – y)