The correct option is (a) [1 + (d^2y/dx^2)^2]^3/2
For explanation I would say: Here, x = a sin2θ(1 + cos2θ) and y = a cos2θ(1 – cos2θ)
=> x = 2a cos^2θ*sin2θ and y = 2a sin^2θ*cos2θ
Now differentiating x and y with respect to θ we get,
dx/dθ = 2a[cos^2θ*2cos2θ + sin2θ*2cos2θ cos2θ]
= 4a cosθ (cosθ cos2θ – sinθ sin2θ)
= 4a cosθ cos(θ + 2θ)
= 4a cosθ cos3θ
dy/dθ = 2a[cos2θ*2cosθ sinθ + sin^2θ (-2sin2θ)]
= 4a sinθ (cosθ cos2θ – sinθ sin2θ )
= 4a sinθ cos(θ + 2θ)
= 4a sinθ cos3θ
Thus, dy/dx = (dy/dθ)/(dx/dθ)
= (= 4a cosθ cos3θ)/( 4a sinθ cos3θ)
= tanθ
So, (d^2y/dx^2) = d/dx(tanθ)
= sec^2θ*dθ/dx
= sec^2θ*(1/(dx/dθ))
= sec^2θ*1/(4a cosθ cos3θ)
Or, 4a cos3θ (d^2y/dx^2) = sec^3θ
= (sec^2θ)^3/2
= (1 + tan2θ)^3/2
As, dy/dx = tanθ
So, 4a cos3θ(d^2y/dx^2) = [1 + (d^2y/dx^2)^2]^3/2