Correct choice is (d) -(2ax/(x^2 + a^2)^2)
Easy explanation: We have, y = tan^-1(x/a)
Differentiating two times, with respect to x, we get,
y’ = d/dx(tan^-1(x/a))
= 1/(1 + (x/a)^2)*d/dx(x/a)
= a^2/(x^2 + a^2)* 1/a
= a/(x^2 + a^2)
y” = d/dx (a/(x^2 + a^2))
= a* d/dx(x^2 + a^2)^-1
= a(-1) (x^2 + a^2)^-2*d/dx(x^2 + a^2)
Now solving we get,
= -a/(x^2 + a^2)^2*2x
= -(2ax/(x^2 + a^2)^2)