Right answer is (b) 0
Explanation: We have, y = cos(2sin^-1x)
Differentiating both the sides,
y’ = d/dxcos(2sin^-1x)
= -sin(2sin^-1x) * d/dx(2sin^-1x)
or, y’ = -sin(2sin^-1x)*2*1/√(1 – x^2)
or, y’*√(1 – x^2) = -2sin(2sin^-1x)
Squaring both sides,
or, (y’)^2 *(1 – x^2) = 4sin^2(2sin^-1x)
or, (y’)^2 *(1 – x^2) = 4(1 – y^2)
Differentiating again with respect to x, we get,
(1 – x^2)*2y’y” + (y’)^2 (-2x) = 4 * (-2yy’)
(1 – x^2)y” – xy’ = – 4y
=> (1 – x^2)y” – xy’ + 4y = 0