The correct answer is (a) 5e^x^2 (1+tanx)^2
To explain I would say: Consider y=5e^x^2 tanx
Differentiating w.r.t x by using chain rule, we get
\(\frac{dy}{dx}\)=tanx \(\frac{d}{dx}\) (5e^x^2)+5e^x^2 \(\frac{d}{dx}\) (tanx)
\(\frac{dy}{dx}\)=tanx (5e^x^2.2x)+5e^x^2 (sec^2x)
\(\frac{dy}{dx}\)=5e^x^2 (2x tanx+sec^2x)
\(\frac{dy}{dx}\)=5e^x^2 (1+tan^2x+2x tanx)
\(\frac{dy}{dx}\)=5e^x^2 (1+tanx)^2