Correct option is (c) (cos3x)^3x (3 log(cos3x) – 9x tan3x)
The best explanation: Consider y=(cos3x)^3x
Applying log on both sides, we get
logy=log(cos3x)^3x
logy=3x log(cos3x)
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}=\frac{d}{dx} (3x \,log(cos3x))\)
By using u.v=u’ v+uv’, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{d}{dx} \,(3x) \,log(cos3x)+\frac{d}{dx} \,(log(cos3x)).3x\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) + \(\frac{1}{cos3x} \,. \frac{d}{dx} \,(cos3x).3x)\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) + \(\frac{1}{cos3x} \,. \,(-sin3x).\frac{d}{dx}(3x).3x)\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) + \(\frac{1}{cos3x} \,. \,(-sin3x).3.3x)\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) – 9x tan3x)
\(\frac{dy}{dx}\)=(cos3x)^3x (3 log(cos3x) – 9x tan3x)