The correct option is (b) \(\begin{bmatrix}26&12\\20&10\end{bmatrix}\)
The best explanation: Given that A’=\(\begin{bmatrix}8&2\\6&4\end{bmatrix}\) and B’=\(\begin{bmatrix}9&5\\7&3\end{bmatrix}\)
Calculating the transpose of A’ and B’, we get
A=\(\begin{bmatrix}8&6\\2&4\end{bmatrix}\) and B=\(\begin{bmatrix}9&7\\5&3\end{bmatrix}\)
⇒(A+2B)=\(\begin{bmatrix}8&6\\2&4\end{bmatrix}\)+2\(\begin{bmatrix}9&7\\5&3\end{bmatrix}\)
=\(\begin{bmatrix}8+18&6+14\\2+10&4+6\end{bmatrix}\)=\(\begin{bmatrix}26&20\\12&10\end{bmatrix}\)
Hence, (A+2B)’=\(\begin{bmatrix}26&12\\20&10\end{bmatrix}\).