Right choice is (b) \(4e^{4x^5}.x^{logx^2-1} (10x^5+log2x^2)\)
Explanation: Consider y=\(e^{4x^5}+2x^{logx^2}\)
Applying log on both sides, we get
logy=\(loge^{4x^5} \,+ \,log2x^{logx^2}\)
logy=\(4x^5+logx^2 \,. \,log2x\)
logy=\(4x^5+2 \,logx \,log2x\)
Differentiating with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+2(\frac{d}{dx} \,(logx) \,log2x+\frac{d}{dx} \,(log2x) \,logx)\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+2\left (\frac{log2x}{x}+\frac{1}{2x}.2.logx\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+\frac{2(log2x+logx)}{x}\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+\frac{2(log2x^2)}{x}\)
\(\frac{dy}{dx}\)=\(y(20x^4+\frac{2(log2x^2)}{x})\)
\(\frac{dy}{dx}\)=\(e^{4x^5}.2x^{logx^2} (20x^4+\frac{2(log2x^2)}{x})\)
\(\frac{dy}{dx}\)=\(4e^{4x^5}.x^{logx^2 -1} (10x^5+log2x^2)\)