The correct option is (b) –\(\frac{cos2x}{2}+\frac{e^{3x}}{3}-\frac{sin3x}{3}+C\)
To explain I would say: To find \(\int \,sin2x+e^{3x}-cos3x \,dx\)
\(\int sin2x+e^{3x}-cos3x \,dx=\int \,sin2x \,dx+\int \,e^{3x} \,dx-\int \,cos3x \,dx\)
\(\int sin2x+e^{3x}-cos3x \,dx=-\frac{cos2x}{2}+\frac{e^{3x}}{3}-\frac{sin3x}{3}+C\)