The correct choice is (b) 2x^2-3 logx+C
Easiest explanation: To find \(\int \frac{4x^4-3x^2}{x^3} dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\int \frac{4x^4}{x^3} – \frac{3x^2}{x^3} \,dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\int 4x dx-\int \frac{3}{x} dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\frac{4x^2}{2}-3 logx\)
∴ \(\int \frac{4x^4-3x^2}{x^3} \,dx=2x^2-3 \,logx+C\).