Correct option is (a) \(\frac{7x^4}{4}-2e^{2x}+\frac{2}{x}+C\)
The best I can explain: To find:\(\int 7x^8-4e^{2x}-\frac{2}{x^2} dx\)
\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx=\int 7x^9 dx-4\int e^{2x} dx-2\int \frac{1}{x}^2 dx\)
\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx=\frac{7x^{9+1}}{9+1}-\frac{4e^{2x}}{2}-\frac{2x^{-2+1}}{-2+1}\)
∴\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} dx=\frac{7x^{10}}{10}-2e^{2x}+\frac{2}{x}+C\)