Correct option is (a) \(e^{-cot^{-1}x}+C\)
The explanation: Let \(-cot^{-1}x\)=t
Differentiating w.r.t x, we get
–\(\left (-\frac{1}{1+x^2}\right )dx=dt\)
\(\frac{1}{1+x^2} dx=dt\)
\(\int \frac{e^{-cot^{-1}}x}{1+x^2} dx=\int e^t \,dt\)
=e^t
Replacing t with -cot^-1x, we get
\(\int \frac{e^{-cot^{-1}}x}{1+x^2} dx=e^{-cot^{-1}}x+C\)