Right option is (a) –\(\frac{1}{(3e^{x^3})}+C\)
To explain: Let x^3=t
3x^2 dx=dt
x^2 dx=dt/3
∴\(\int \frac{x^2}{e^{x^3}} dx=\frac{1}{3} \int \frac{dt}{e^t}\)
=\(\frac{1}{3} \left (-e^{-t}\right )\)
Replacing t with x^3, we get
\(\int \frac{x^2}{e^{x^3}} dx=-\frac{1}{3e^{x^3}}+C\)