The correct answer is (d) \(3e^x+\frac{1}{3} (logx)^2+C\)
Explanation: \(\int 3e^x+\frac{2(logx^2)}{3x} dx=3\int e^x dx+\frac{2}{3} \int \frac{logx}{x}\)
Let logx=t
Differentiating w.r.t x, we get
\(\frac{1}{x} dx=dt\)
∴\(\int \frac{logx}{x}=\int \,t \,dt=\frac{t^2}{2}\)
\(\int e^x dx=e^x\)
Replacing t with logx, we get
\(\int 3e^x+\frac{2(logx^2)}{3x} dx=3e^x+\frac{1}{3} (logx)^2+C\)