Right choice is (d) -log(1-sin2x)+C
The explanation is: \(\int \frac{2 cos2x}{(cosx-sinx)^2} dx=\int \frac{2 cos2x}{cos^2x+sin^2x-sin2x} \,dx \,(∵2 cosx sinx=sin2x)\)
=\(\int \frac{2 cos2x}{1-sin2x} dx\)
Let 1-sin2x=t
Differentiating w.r.t x, we get
-2 cos2x dx=dt
2 cos2x dx=-dt
\(\int \frac{2 cos2x}{(cosx-sinx)^2} dx=-\int \frac{dt}{t}\)
=-logt
Replacing t with 1-sin2x, we get
∴\(\int \frac{2 cos2x}{(cosx-sinx)^2}\) dx=-log(1-sin2x)+C