Right answer is (a) \(\frac{1}{4} log(2x^2+6x+7) + \frac{3}{4} \left (\frac{1}{\sqrt{2}} tan^{-1}\frac{2x+3}{2\sqrt{2}}\right )+C\)
Explanation: We can express
x+3=A \(\frac{d}{dx}\) (2x^2+6x+7)+B
x+3=A(4x+6)+B
x+3=4Ax+(6A+B)
Comparing the coefficients, we get
4A=1 ⇒A=1/4
6A+B=3 ⇒B=3/2
\(\int \frac{x+3}{2x^2+6x+7} dx=\frac{1}{4} \int \frac{4x+6}{2x^2+6x+7} dx+\frac{3}{2} \int \frac{1}{2x^2+6x+7} dx\)
Let 2x^2+6x+7=t
(4x+6)dx=dt
\(\frac{1}{4} \int \frac{4x+6}{2x^2+6x+7} dx=\frac{1}{4} \int \frac{dt}{t}=\frac{1}{4} logt\)
Replacing t with (2x^2+6x+7)
\(\frac{1}{4} \int \frac{4x+6}{2x^2+6x+7} dx=\frac{1}{4} log(2x^2+6x+7)\)
\(\frac{3}{2} \int \frac{1}{2x^2+6x+7} dx=\frac{3}{2} \int \frac{1}{2(x^2+3x+\frac{7}{2})} dx=\frac{3}{4} \int \frac{1}{(x+\frac{3}{2})^2+2} dx\)
=\(\frac{3}{4} \left (\frac{1}{\sqrt{2}} tan^{-1}\frac{2x+3}{2\sqrt{2}} \right )\)
∴\(\int \frac{x+3}{2x^2+6x+7} dx=\frac{1}{4} log(2x^2+6x+7) + \frac{3}{4} \left (\frac{1}{\sqrt{2}} tan^{-1}\frac{2x+3}{2√2} \right )+C\)