Right choice is (b) (logy)^2-(logx)^2=0
Easy explanation: \(\frac{dy}{dx}=\frac{9y \,logx}{5x \,logy}\)
Separating the variables, we get
\(\frac{5 \,logy}{y} dy=\frac{9 \,logx}{x} dx\)
Integrating both sides, we get
\(5\int \frac{logy}{y} \,dy=9\int \frac{logx}{x} \,dx\) –(1)
First, for integrating \(\frac{logy}{y}\)
Let logy=t
Differentiating w.r.t y, we get
\(\frac{1}{y}\) dy=dt
∴\(\int \frac{logy}{y} \,dy=\int t \,dt\)
=\(\frac{t^2}{2}=\frac{logy^2}{2}\)
Similarly integrating \(\frac{logx}{x}\)
Let logx=t
Differentiating w.r.t x, we get
\(\frac{1}{x}\) dx=dt
∴\(\int \frac{logx}{x} dy=\int t \,dt\)
=\(\frac{t^2}{2}=\frac{(logx)^2}{2}\)
Hence, equation (1), becomes
\(\frac{(logy)^2}{2}=\frac{(logx)^2}{2}+C\) –(2)
Given y=2, we get x=2
Substituting the values in equation (2), we get
\(\frac{(logy)^2}{2}=\frac{(logx)^2}{2}+C\)
C=0
Therefore, the equation becomes \((logy)^2=(logx^2)\)
∴(logy)^2-(logx)^2=0.