Right option is (b) x^4+8x+y^4-16y+C=0
The explanation: Given that, \(\frac{dy}{dx}=\frac{2+x^3}{4-y^3}\)
Separating the variables, we get
(4-y^3)dy=(2+x^3)dx
Integrating both sides, we get
\(\int 4-y^3 \,dy=\int 2+x^3 \,dx\)
\(4y-\frac{y^4}{4}=2x+\frac{x^4}{4}+C_1\)
x^4+8x+y^4-16y+C=0 (where 4C1=C)