The correct choice is (a) \(\frac{4}{e}\)
To elaborate: \(I=\int_{-1}^1 \,2xe^x \,dx\)
F(x)=\(\int 2xe^x dx\)
By using the formula, \(\int u.v \,dx=u \int v \,dx-\int u'(\int v \,dx)\)
F(x)=2x\(\int e^x dx-\int(2x)’\int e^x \,dx\)
=\(2xe^x-\int 2e^x dx\)
=\(2e^x (x-1)\)
Therefore, by using the fundamental theorem of calculus, we get
I=F(1)-F(-1)
I=2e^1 (1-1)-2e^-1 (-1-1)
I=\(\frac{4}{e}\).