Correct option is (d) \(1+\frac{x^2}{2!}+\frac{3x^4}{4!}+\frac{15x^6}{6!}+..\)
To explain: Given ^dy⁄dx = xy + x^2
hence, ^dy⁄dy (x=0) = 0
and, ^d^2y⁄dx^2= xy1 + y + 2x
hence, y2 = xy1 + y + 2x
hence, ^d^2y⁄dx^2(x=0)=1
Differentiating it n times we get,
\(y_{n+2}=xy_{n+1}+ny_n+y_n=xy_{n+1}+(n+1)y_n\)
Putting x=0 we get,
\(y_{n+2} (0)=(n+1)y_n (0)\)
Now putting the values of n as 1, 2, 3, 4, 5 we get,
\(y_3 (0)=0, \,y_4 (0)=3, \,y_5 (0)=0, \,y_6(0)=15……\) and so on
By mclaurin’s series,
\(y=1+\frac{x^2}{2!}+\frac{3x^4}{4!}+\frac{15x^6}{6!}+…\)