The correct option is (d) \(e^{-m} [1+(x+m)+\frac{(x+m)^2}{2!}+\frac{(x+m)^3}{3!}+….]\)
For explanation: Let, h = x + m = > f(x) = f(h-m) = e^(h-m)
By taylor theorem, putting a = -m, we get,
f(a+h) = \(f(a)+\frac{h}{1!} f’ (a)+\frac{h^2}{2!} f” (a)…\)
f(h-m) = \(f(-m)+h/1! f'(-m)+\frac{h^2}{2!} f” (-m)….(1)\)
now, f(-m) = f’(-m) = f’’(-m)=e^-m
hence,
f(x)=e^x=f(h-m)=\(e^{-m} [1+(x+m)+\frac{(x+m)^2}{2!}+\frac{(x+m)^3}{3!}+….]\)