Right option is (b) \(\sum_{n=0}^∞ (\frac{x^n [Cos(nt)]}{n!})\)
The explanation is: Given, f(x)=Cos(xSin(t))=real part of (e^ixSin(t))
=real part of(e^xCos(t) e^ixSin(t))
=real part of(e^x[Cos(t)+iSin(t)])
=Real part of \(\sum_{n=0}^∞ \frac{x^n [Cos(nt)+iSin(nt)]}{n!}\)
=\(\sum_{n=0}^∞ \frac{x^n [Cos(nt)]}{n!}\)