The correct option is (a) \(x+\frac{x^3}{6}+\frac{3}{40} x^5+\frac{5}{112} x^7+…..\)
To explain: Given, y = Sin^-1(x), hence at x = 0, y = 0
Now, differentiating it, we get
\(\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}=(1-x^2)^{-1/2}\)
On expanding the R.H.S. by Binomial Theorem we get,
\(\frac{dy}{dx}=1+\frac{x^2}{2}+\frac{3}{8} x^4+\frac{5}{16} x^6+…\)
On integrating we get,
\(y=x+\frac{x^3}{6}+\frac{3}{40} x^5+\frac{5}{112} x^7+….+C\)
By putting x=0 hence we get,
y=c=0
Hence,
\(y=x+\frac{x^3}{6}+\frac{3}{40} x^5+\frac{5}{112} x^7+….\)