The correct option is (a) 1 – (x-1) + (x-1)^2 – (x-1)^3 + ….
To explain: Given f(x) = ^1⁄x
Let, x – 1 = h
Hence, x = 1 + h
Hence, f(x) = f(1 + h) = f(1) + ^h⁄1! f’ (1) + ^h^2⁄2! f^” (1) +^h^3⁄3! f^”’ (1)+…
Now, f(1) = 1, f'(1) = -1, f”(1) = 2 ,f”'(1) = -6,…….
Hence, f(1 + h) = 1 – h + h^2 – h^3+….
hence, 1 – (x-1) + (x-1)^2 – (x-1)^3 +….