Right option is (a) ln(m)+\(\frac{h}{m}-\frac{1}{2!} (h/m)^2+\frac{2}{3!} (h/m)^3-……\)
Easiest explanation: where, h = x-m
Let, h = x – m => f(x) = f(h+m) = e^(h+m)
By taylor theorem, putting a = m , we get,
f(a+h) = \(f(a)+\frac{h}{1!} f’ (a)+\frac{h^2}{2! }f” (a)…\)
f(h-m) = \(f(m)+\frac{h}{1!} f’ (m)+\frac{h^2}{2!} f” (m)\)…….(1)
now,f(m) = ln(m), f’(m)=1/m, f” (m)=-1/m^2, f”’ (m)=2/m^3,……
hence,
f(x)=ln(x)=f(h+m)=\(ln(m)+\frac{h}{m}-\frac{h^2}{2!}\frac{1}{m^2}+\frac{h^3}{3!} \frac{2}{m^3}-……\)
f(x)=ln(x)=ln(m)+\(\frac{h}{m}-\frac{1}{2!} (h/m)^2+\frac{2}{3!} (h/m)^3-……\)
where, h = x-m