The correct option is (b) e[1 – ^x⁄2 + ^11x^2⁄24 -…..]
To explain: Given, y = (1 + x)^^1⁄x
Hence,
ln(y)=\(\frac{ln(1+x)}{x}\)
Hence, ln(y)=\(\frac{1}{x} [x-\frac{x^2}{2}+\frac{x^3}{3}-……]=1-\frac{x}{2}+\frac{x^2}{3}\)-……
Hence, \(y=e^{1-\frac{x}{2}+\frac{x^2}{3}-……}=e^{1+z}\), where, \(z=\frac{-x}{2}+\frac{x^2}{3}-……\)
Hence, \(y=e.e^z=e(1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+…)\)
y=\(e[1+(\frac{-x}{2}+\frac{x^2}{3}-……)+\frac{1}{2!}(\frac{-x}{2}+\frac{x^2}{3}-…)^2+…]\)
y=\(e[1-x/2+x^2/e+x^2/8+…]\)
y = e[1 – ^x⁄2 + ^11x^2⁄24 -…..].