Correct option is (b) e
The best I can explain: \(\lim_{x\rightarrow \infty}(1+\frac{1}{x})^x\)=1^∞ (Indeterminate form)
Hence
Let t=1/x
->y=\(\lim_{x\rightarrow\infty}(1+\frac{1}{x})^x=\lim_{t\rightarrow 0}(1+t)^{1/t}\)
Taking log on both side,
ln(y) = \(\lim_{t\rightarrow 0} \frac{ln(1+t)}{t}\) = 0/0 (Indeterminate form)
Applying L’Hospital Rule again
ln(y) = \(\lim_{t\rightarrow 0} \frac{1}{1+t}\) = 1
=> y = \(\lim_{x\rightarrow\infty}(1+\frac{1}{x})^x\) = e