Correct choice is (b) \(\frac{π}{2}\)
For explanation: r=a(1+sinθ) : r=a(1-sinθ)
taking logarithm on both the equations
logr = loga + log(1+sinθ) : logr = loga + log(1-sinθ)
differentiating on both side we get
\( \frac{1}{r} \frac{dr}{dθ} = \frac{cosθ}{1+sinθ} : \frac{1}{r} \frac{dr}{dθ} = \frac{-cosθ}{1-sinθ}\)
\(cot∅1 = \frac{cosθ}{1+sinθ} : cot∅2 = \frac{-cosθ}{1-sinθ}\)
where ∅1&∅2 are the angle between tangent & the vector respectively
\(tan∅1 = \frac{1+sinθ}{cosθ} : tan∅2 = \frac{1-sinθ}{cosθ}\)
\(tan∅1 . tan∅2 = \frac{1+sinθ}{cosθ} . \frac{1-sinθ}{-cosθ} = \frac{1-sin^2 θ}{-cos^2 θ} = -\frac{cos^2 θ}{cos^2 θ} = -1\)
above is the condition of orthogonality of two polar curves thus
|∅1-∅2|=\(\frac{π}{2}\).