Correct answer is (d) r^n+1=pa^n
To elaborate: Taking logarithm for the given curve we get
n logr = n loga + log(cosnθ)
differentiating w.r.t θ, we get
\(\frac{n}{r} \frac{dr}{dθ} = \frac{-n sinnθ}{cosnθ} \rightarrow \frac{1}{r} \frac{dr}{dθ} = -tanθ\)
thus \(cot∅ = cot(\frac{π}{2} + nθ)\rightarrow ∅ = \frac{π}{2} + nθ……(1)\)
from the eqn w.k.t p=r sin ∅
substituting from (1)
p = r sin (\(\frac{π}{2}\) + nθ) = r cos (nθ), but we have r^n = a^n cosnθ
hence dividing them we get \(\frac{p}{r^n} = \frac{r cos (nθ)}{a^n cosnθ}\)
r^n+1=pa^n.