The correct choice is (c) \(p = 2a\sqrt{2}\)
The best explanation: Taking Logarithm on both side of the polar curve
we get logr = loga + 2 logsec(\(\frac{θ}{2}\))
differentiating w.r.t θ we get
\(\frac{1}{r} \frac{dr}{dθ} = \frac{2 sec(\frac{θ}{2}).tan(\frac{θ}{2}) }{2 sec(\frac{θ}{2})} = tan(\frac{θ}{2})\)
\(cot∅ = cot(\frac{π}{2} – \frac{θ}{2}) \rightarrow ∅ = \frac{π}{2} -\frac{θ}{2}\)
w.k.t length of the perpendicular is given by p=r sin ∅
thus substituting ∅ value we get \(p = r \,sin(\frac{π}{2} – \frac{θ}{2}) = r \,cos(\frac{θ}{2})\)
at \( θ=\frac{π}{4}, p = r \,cos \frac{π}{4} = \frac{r}{\sqrt{2}}….(1)\)
but \( r=a \,sec^2 (\frac{θ}{2}) \,at\, θ = \frac{π}{4}, r=a \,sec^2 (\frac{π}{4}) = 4a…(2)\)
from (1) & (2) \(p=\frac{4a}{\sqrt{2}} = 2a\sqrt{2}\).