Right choice is (a) \(tan\,ω=\frac{tan∅+tanθ}{1-tan∅tanθ}\)
The best explanation: From the fig (1) ω=∅+θ…….. (triangle rule & \(\hat{opt}\) = ∅)
tan ω=tan(θ+∅)
\(tan\,ω=\frac{tan∅+tanθ}{1-tan∅tanθ}\) ……(1) further more w.k.t x=rcosθ, y=rsinθ
But \(tan\,ω = \frac{dy}{dx}\)……(slope of the tangent TT’)
\(tan\,ω = \frac{\frac{dy}{dθ}} {\frac{dx}{dθ}}\)……..since x & y are functions of θ
i.e \(\displaystyle tan\,ω = \frac{\frac{d(r sinθ)}{dθ}}{\frac{d(r cosθ)}{dθ}} = \frac{r cosθ + \frac{dr}{dθ} sinθ}{-r sinθ + \frac{dr}{dθ} cosθ}\)
\(\displaystyle tan\,ω = \frac{\frac{r cosθ} {\frac{dr}{dθ} cosθ} + \frac{\frac{dr}{dθ} sinθ}{\frac{dr}{dθ} cosθ}} {\frac{-r sinθ}{\frac{dr}{dθ} cosθ}+\frac{\frac{dr}{dθ} cosθ}{\frac{dr}{dθ} cosθ}} = \frac{\frac{r}{\frac{dr}{dθ}}+tanθ}{\frac{r}{\frac{dr}{dθ}}tanθ}\)…………(2)
from (1) &(2)
\(tan∅ = \frac{r}{\frac{dr}{dθ}} = r (\frac{dθ}{dr}).\)