Right choice is (c) r sec (2θ)
For explanation I would say: Squaring the given curve on both side i.e \(r=a sec ^2 (\frac{θ}{2})\)…(1)
\(\frac{dr}{dθ} = a.2 sec(\frac{θ}{2}) sec(\frac{θ}{2}) tan (\frac{θ}{2}).1/2 = a sec^2 (\frac{θ}{2}) tan(\frac{θ}{2}) \)
from (1)
\(\frac{dr}{dθ} = r tan (\frac{θ}{2}) \,the\, \,equation\, \,for\, \frac{ds}{dθ} \,is\, = \sqrt{(r^2+(\frac{dr}{dθ})^2)} = \sqrt{r^2(1+ tan^2 (\frac{θ}{2}))} \)
\(\frac{ds}{dθ} = r sec (\frac{θ}{2}).\)