The correct option is (a) 1.74
To explain: Let, f(x) = e^xSin(x), f(0) = 1
Now, the expansion of xSin(x) is \(x^2-\frac{x^3}{3!}+\frac{x^6}{5!}+….\)
Hence, \(e^xSin(x)=e^y=1+y+\frac{y^2}{2!}+\frac{y^3}{3!}+….\)
Hence,
\(e^{xSin(x)}=1+(x^2-\frac{x^4}{3!}+\frac{x^6}{6!}+…..)+\frac{(x^2-\frac{x^4}{3!}+\frac{x^6}{6!}+…..)^2}{2!}\)
\(+\frac{(x^2-\frac{x^4}{3!}+\frac{x^6}{6!}+…..)^3}{6}+….\)
\(e^{xSin(x)}=1+x^2-\frac{x^4}{3!}+\frac{x^6}{5!}+\frac{x^4}{2}-\frac{x^6}{6}+\frac{x^6}{6}+….\) (we neglect all other other terms by considering the options given)
Hence, \(e^{xSin(x)}=1+x^2+\frac{x^4}{3}+\frac{x^6}{120}+……\)
Putting, x = π/4,
We get,
f(π/4)=e^π/4 Sin(π/4)=e^π/(4√2)=1+(π/4)^2+1/3 (π/4)^4+….=1+.6168+.1268=1.74