The Mclaurin Series expansion of sin(e^x) is?
(a) sin(1)+\(\frac{x.cos(1)}{1!}+\sum_{n=2}^{\infty}\sum_{a=0}^{\infty}\frac{x^n.(-1)^a}{n!}\times\frac{(2a+1)^n}{(2a+1)!}\)
(b) \(\frac{e^x}{1!}+\frac{e^{3x}}{3!}+\frac{e^{5x}}{5!}…\infty\)
(c) \(-\frac{e^x}{1!}+\frac{e^{3x}}{3!}-\frac{e^{5x}}{5!}…\infty\)
(d) \(\sum_{n=2}^{\infty}\sum_{a=0}^{\infty}\frac{x^n.(-1)^a}{n!}\times \frac{(2a+1)^n}{(2a+1)!}\)
This question was addressed to me in an international level competition.
Asked question is from Taylor Mclaurin Series topic in portion Differential Calculus of Engineering Mathematics