Right answer is (b) 1 + x + ^x^2⁄2 – ^x^4⁄8 +….
Best explanation: Now f(x) = e^Sin(x), f(0) = 1
Hence, f^‘ (x)=f(x)Cos(x), f^‘ (0) = 1
f^” (x)=f^‘ (x)Cos(x) – f(x)Sin(x),f^” (0)=1
f^”’ (x)=f^” (x)Cos(x) – 2f^‘ (x)Sin(x) – f(x) cos(x),f^”’ (x) = 0
f^”” (x)=f^”’ (x)Cos(x) – 3f^” (x)Sin(x) – 3f^‘ (x) cos(x) + f(x) sin(x), f^”” (x) = -3
Hence,
f(x) = e^Sin(x) = 1 + x + ^x^2⁄2 – ^x^4⁄8 +…. (By mclaurin’ sexpansion)