The correct choice is (a) \(\frac{ds}{dx} = \sqrt{1+(\frac{dy}{dx})^2}\)
To explain: From the below figure we can notice that ds is parallel to tangent to the curve, thus ds segment make an angle of φ with x-axis in positive direction
\(\frac{dy}{ds} = sinφ, \frac{dx}{ds} = cosφ, \frac{ds}{dx} = secφ, i.e (\frac{dx}{ds})^2 = sec^2 φ = 1+tan^2 φ…(1)\)
but \(tan φ=\frac{dy}{dx}\) = slope
substituting in (1) we get \( 1+(\frac{dy}{dx})^2 = (\frac{ds}{dx})^2 = \frac{ds}{dx} = \sqrt{1+(\frac{dy}{dx})^2}\).