Right answer is (a) s=r sec(a)+c
To explain I would say: r=b e^θ cota
\(\frac{dr}{dθ} = b e^{θ cota}(cot a)=r cot(a) \)
w.k.t \(\frac{ds}{dr} = \sqrt{1+r^2 (\frac{dθ}{dr})^2} \,where\, \frac{dθ}{dr}=\frac{1}{r} \,tana\)
\(\frac{ds}{dr} = \sqrt{1+tan^2 a} = sec \,a \rightarrow s = \int sec \,a \,dr \, = r sec(a)+c,\) where c is constant of integration.