Right option is (d) √2 ae^t
For explanation I would say: w.k.t \(\frac{ds}{dt} = \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2}…(1)\)
\(\frac{dx}{dt} = ae^t (cos t + sin t), \frac{dy}{dt} = ae^t (-sin t + cost)\)
substituting in (1) we get
\(\frac{ds}{dt} = ae^t \sqrt{(cos t + sin t)^2+(-sin t+cost)^2}\)
\(\frac{ds}{dt} = ae^t \sqrt{1+2 sin t cos + 1 – 2 sin t cost} = \sqrt{2} ae^t…(cos^{2} t + sin{2} t = 1).\)