Correct answer is (b) zln(z)
To elaborate: Given \(z=e^{\frac{x^2+y^2}{x+y}}\),let u=ln(z)=\(\frac{x^2+y^2}{x+y}=\frac{x(1+(\frac{y}{x})^2)}{(1+\frac{y}{x})}\) = x f(y/x)
Hence u is homogeneous of order 1,
Hence,
\(x \frac{∂u}{∂x}+y \frac{∂u}{∂y}\)=u
Putting, u = ln(z) we get,
\(x \frac{∂z}{∂x}+y \frac{∂z}{∂y}\) = zln(z)