Right option is (b) ^1⁄4 tan^(-1)(x + ^1⁄2)
Explanation: Add constant automatically
Given, \(\int \frac{1}{4x^2+4x+5} dx\)
=\(\int \frac{1}{4 (x^2+x+\frac{5}{4}+\frac{1}{4}+\frac{1}{4})} dx =\int \frac{1}{4[(x+\frac{1}{2})^2+1^2])}dx=\frac{1}{4} tan^{-1}(x+\frac{1}{2})\)