Right option is (c) \(2\left [\frac{1}{2} (x+\frac{1}{2}) \sqrt{(x+\frac{1}{2})^2+1)}\right ]+\frac{1}{2} ln\left [(x+\frac{1}{2})+\sqrt{(x+\frac{1}{2})^2+1} \right ]\)
Easy explanation: Add constant automatically
Given, \(\int \sqrt{4x^2+4x+5} dx=\int 2\sqrt{(x+\frac{1}{2})^2+1^2} dx\)
=\(\int 2\sqrt{t^2+1^2} dt=2\left [\frac{1}{2} t\sqrt{t^2+1}\right ]+\frac{1}{2} ln[t+\sqrt{t^2+1}]\)
=\(2\left [\frac{1}{2} (x+\frac{1}{2}) \sqrt{(x+\frac{1}{2})^2+1)} \right ]+\frac{1}{2} ln\left [(x+\frac{1}{2})+\sqrt{(x+1/2)^2+1}\right ]\)