Right choice is (a) \(x^2 \frac{∂^2 f}{∂x^2}+2xy \frac{∂^2 f}{∂x∂y}+y^2 \frac{∂^2 f}{∂y^2}=n(n-1)f\)
Easiest explanation: Since f satisfies euler’s theorem,
\(x \frac{∂z}{∂x}+y \frac{∂z}{∂y}=nz\)
Differentiating it w.r.t x and y respectively we get,
\(x \frac{∂^2 u}{∂x^2}+\frac{∂u}{∂x}+y \frac{∂^2 u}{∂x∂y}=n \frac{∂u}{∂x}\),
and
\(x \frac{∂^2 u}{∂y}∂x+\frac{∂u}{∂y}+y \frac{∂^2 u}{∂y^2}=n \frac{∂u}{∂y}\)
Multiplying with x and y respectively,
\(x^2 \frac{∂^2 u}{∂x^2}+x \frac{∂u}{∂x}+xy \frac{∂^2 u}{∂x∂y}=nx \frac{∂u}{∂x}\),
and
\(xy \frac{∂^2 u}{∂y}∂x+y \frac{∂u}{∂y}+y^2 \frac{∂^2 u}{∂y^2}=ny \frac{∂u}{∂y}\)
Adding above equations we get
\(x^2 \frac{∂^2 u}{∂x^2}+y^2 \frac{∂^2 u}{∂y}+2xy \frac{∂^2 u}{∂x∂y}=n(n-1)u\)