Correct choice is (c) \(\frac{1}{2} erf(2\sqrt{t})\)
For explanation I would say: In the given question,
Let \(p_1(s) = \frac{1}{(s+4)^{\frac{1}{2}}}\) and \(p_2(s) = \frac{1}{s}\)
\(f_1 (t) = L^{-1} (\frac{1}{(s+4)^{\frac{1}{2}}}) = \frac{e^{-4t}×\sqrt{t}}{\sqrt\pi}\)
\(f_2 (t) = L^{-1} \frac{1}{s} = 1\)
By Convolution Theorem,
\(L^{-1} (p_1(s)×p_2(s)) = \int_{0}^{t}f_1(u) f_2(t-u) dt\)
\(L^{-1} (\frac{1}{s(s+4)^{\frac{1}{2}}}) = \int_{0}^{t}\frac{\sqrt{u}}{\sqrt\pi} e^{-4u} \,du\)
\(=\frac{1}{\sqrt\pi} \int_{0}^{t}\sqrt{u} e^{-4u} du\)
We know that error function is given by –
\(erf(x)=\frac{2}{\sqrt\pi} \int_{0}^{x}e^{-z^2} dz\)
Applying, 4u=z^2 And setting the limits of u in terms of z, we get
\(L^{-1} (\frac{1}{s(s+4)^{\frac{1}{2}}}) = \frac{1}{2} erf(2\sqrt{t})\)
Thus, the answer is \(\frac{1}{2} erf(2\sqrt{t})\).