Right option is (c) \(\frac{s(e^{-as}-s)}{s-1}\)
To explain I would say: Given, \(y(t)-∫_0^t y(t)dt+\frac{d}{dt} x(t)-x(t-a)=0\)
Taking Laplace, \(Y(s)-\frac{Y(s)}{s}+sX(s)-e^{-as} X(s)=0\)
H(s)=Y(s)/X(s) =\(\frac{(e^{-as}-s)}{1-\frac{1}{s}}=\frac{s(e^{-as}-s)}{s-1}\)