Correct answer is (d) y = x log|x| + x
Explanation: \(\frac{dy}{dx} – \frac{y}{x} = 1\) is of the form \(\frac{dy}{dx}\) + Py = Q where P & Q is a function of x only
given DE is linear DE in y here \(P=\frac{-1}{x}, Q=1, e^{\int P \,dx} = e^{\int \frac{-1}{x} \,dx} = e^{logx^{-1}} = \frac{1}{x}\)
Linear DE solution is given by \(ye^{\int P \,dx} = \int Q \,e^{\int P \,dx} dx + c \rightarrow y \frac{1}{x} = \int 1 \frac{1}{x} \,dx + c\)
\(\frac{y}{x}\) = log|x|+c, given y(1)=1–>y=1 when x=1 i.e c=1 therefore its particular solution is given by y = x log|x| + x.