Right option is (a) \(ye^{2\sqrt{x}}=2\sqrt{x}+c\)
For explanation I would say: \( \frac{1}{\sqrt{x}} e^{-2\sqrt{x}} – \frac{1}{\sqrt{x}} y = \frac{dy}{dx} \rightarrow \frac{dy}{dx} + \frac{1}{\sqrt{x}} y = \frac{1}{\sqrt{x}} e^{-2\sqrt{x}}\) is of the form \(\frac{dy}{dx}\) + Py = Q where P & Q is a function of x only.
given DE is linear DE in y here \(P=\frac{1}{\sqrt{x}}, Q=\frac{1}{\sqrt{x}} e^{-2\sqrt{x}}\)
\(e^{\int P \,dx} = e^{∫ \frac{1}{\sqrt{x}} \,dx} = e^{2\sqrt{x}},\)
Linear DE solution is given by \(ye^{\int P \,dx} = \int Q \,e^{\int P \,dx} dx + c\)
\(ye^{2\sqrt{x}} = \int \frac{1}{\sqrt{x}} e^{-2\sqrt{x}} e^{2\sqrt{x}} \,dx + c = 2\sqrt{x} + c\) is the solution.